Researchers are Advancing Science using Micro Pulse LiDAR Technology

There are so many examples of interesting research using Micro Pulse LiDAR (MPL) technology it is difficult to decide on my favorites; however, I have chosen to highlight the following two papers because these applications for the MPL and MiniMPL address problems that are very important to global health.

Read More

Top 5 Differences Between Micro Pulse LiDAR and Ceilometer Technology

If you are evaluating backscatter LiDAR sensors for measuring aerosols, cloud vertical structure, and planetary boundary layer (PBL) heights, what factors should you consider in your comparison? It really comes down to a choice between the traditional analog technology used in ceilometers and the more recent advanced technology found in Micro Pulse LiDAR (MPL) sensors.

Read More

Planetary Boundary Layer: Why Is It Important?

The famous statistician George Box said “All models are wrong, but some are useful”—for calculating air quality indices and emissions estimates this is certainly true. One way to increase the utility of models is to use up-to-the-minute, local Planetary Boundary Layer (PBL) measurements as an input when generating top-down emissions estimates.

Read More
Image of MiniMPL, in enclosure with 3D scanner, at Himalayan base camp

Micro Pulse LiDAR: Perfect Tool for Atmospheric Research

Micro pulse style lidars are active remote sensing tools proven to be highly useful in atmospheric research. This style of backscatter lidar has been around for decades; however, incremental improvements in photon counting, sensitivity, polarization, optical filters, coatings, and precision machining of each element support increasingly accurate analysis.

Read More